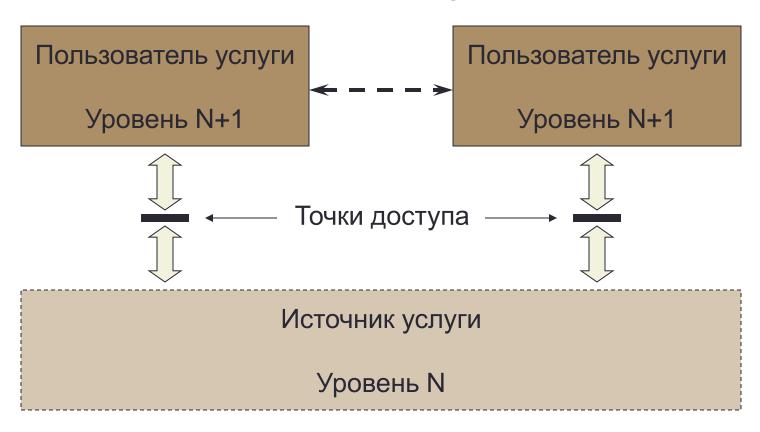
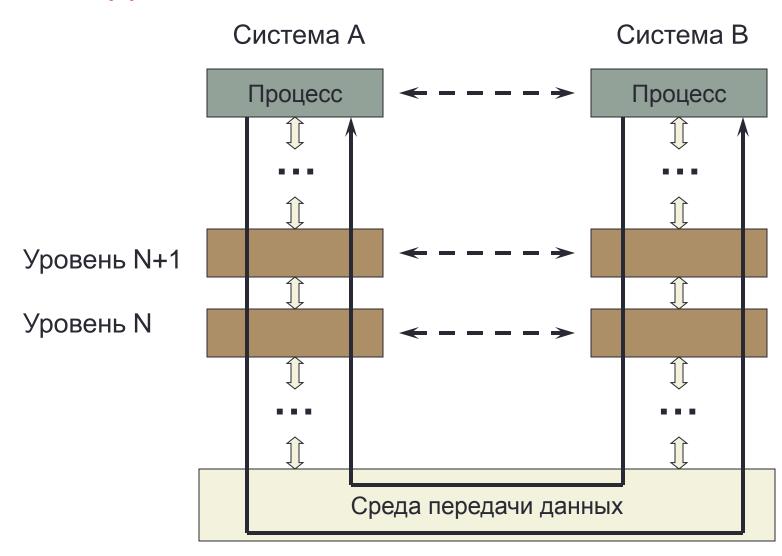
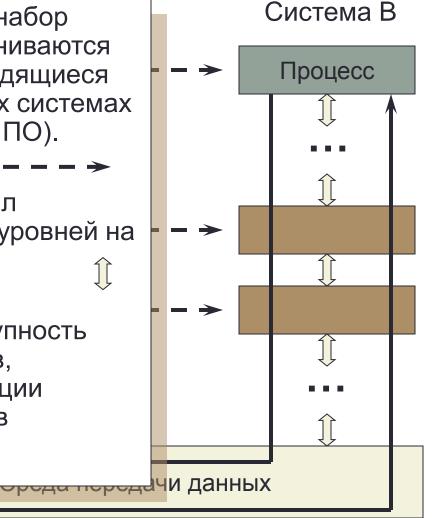

МНОГОУРОВНЕВАЯ МОДЕЛЬ СТЕКА СЕТЕВЫХ ПРОТОКОЛОВ


Организация передачи данных Многоуровневая модель


Организация передачи данных Взаимодействие соседних уровней

Организация передачи данных Взаимодействие соседних уровней

Организация передачи данных Потоки данных



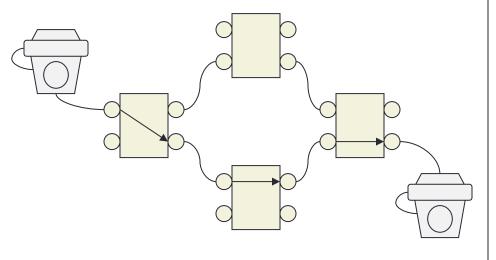
Организация передачи данных Определения

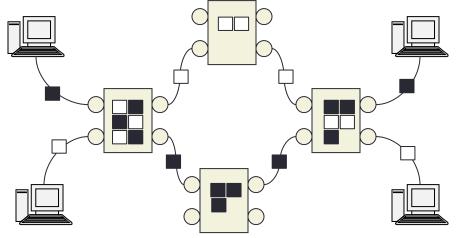
• Протокол – формальный набор правил, по которому обмениваются сетевые компоненты, находящиеся на одном уровне на разных системах (а также реализующее его ПО).

• Интерфейс – набор правил взаимодействия смежных уровней на одной системе.

• Стек протоколов — совокупность интерфейсов и протоколов, достаточные для организации взаимодействия процессов

СПОСОБЫ КОММУТАЦИИ

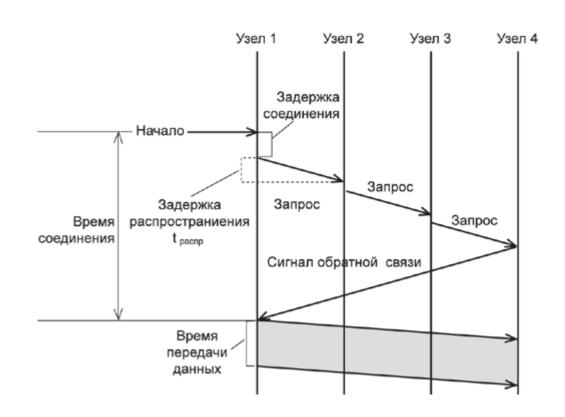

Способы коммутации


Коммутация каналов

Перед началом связи формируется непрерывный составной канал, используемый только конечными клиентами

Коммутация пакетов

Передаваемые данные разделяются на небольшие фрагменты, независимо передаваемые по сети.



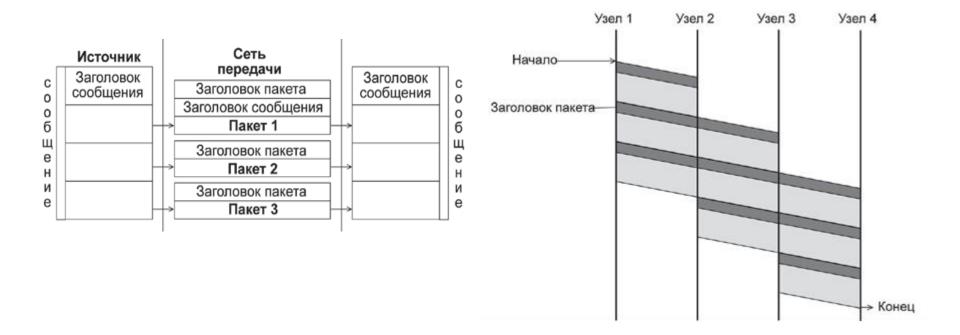
Коммутация каналов

Сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков.

Обязательна процедура установления связи.

Транзитные узлы не буферизируют данные.

Коммутация каналов


Достоинства:

- 1. Постоянная и известная скорость передачи данных между конечными узлами
- 2. Низкий и постоянный уровень задержки при передаче данных через сеть

Недостатки:

- 1. Возможность отказа при установлении соединения
- 2. Нерациональное использование пропускной способности каналов для компьютерного трафика
- 3. Обязательная задержка перед началом передачи данных

Сообщение разбивается на пакеты, каждый из которых снабжается заголовком, содержащим адресную информацию и информацию для сборки сообщения. Пакеты транспортируются по сети как независимые информационные блоки.

Буферизация пакетов транзитными узлами

- Сглаживает пульсации трафика на магистральных каналах
- Вносит задержку в передачу данных

Задержки:

- В источнике передачи данных
 - Время на передачу заголовка
 - Интервалы между передачей пакетов
- В транзитных узлах:
 - Время буферизации
 - Время коммутации:
 - Время ожидания в очереди
 - Время перемещения пакета в выходной порт

Достоинства:

- 1. Высокая общая пропускная способность при передаче пульсирующего трафика
- 2. Динамическое перераспределение ресурсов сети

Недостатки:

- 1. Неопределённость скорости передачи
- 2. Переменная, возможно большая, величина задержки
- 3. Возможность потери данных

Механизмы передачи данных в сетях с коммутацией пакетов:

- Дейтаграммная передача
- Виртуальные каналы (virtual circuit, virtual channel)

Дейтаграммная передача

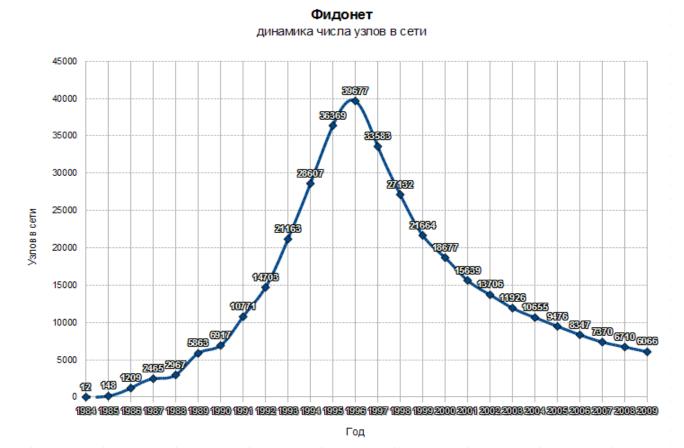
- Передаваемые пакеты обрабатываются независимо друг от друга.
- Принадлежность пакетов одному потоку игнорируется
- Решение о передаче пакета принимается на основе таблиц маршрутизации по адресу получателя пакета.
- Пакеты одного потока могут доставляться по разным маршрутам

Виртуальные каналы

- Создаётся устойчивый путь следования трафика через сеть
- Учитывает существование потоков данных
- Между двумя узлами может быть проложено несколько виртуальных каналов
- Упрощает реализацию механизмов QoS
- Для принятия решения о передаче пакетов используется локальная метка

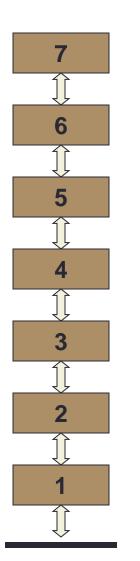
Способы коммутации

Коммутация каналов


- + обеспечиваются гарантированные характеристики качества канала
- задержка перед началом связи
- возможен отказ в построении канала
- невозможностьдинамическогоперераспределения ресурсов

Коммутация пакетов

- + более эффективное использование каналов связи в случае пульсирующей нагрузки
- + возможность динамически распределять пропускную способность между абонентами
- неопределённость пропускной способности и задержек при передаче (QoS)
- возможность потери данных


Коммутация сообщений

Коммутация сообщений – передача единого блока данных между транзитными компьютерами с временной буферизацией этого блока на каждом компьютере.

ЭТАЛОННАЯ МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ OSI ISO

Эталонная модель взаимодействия открытых систем ISO (OSI ISO)

- 7. Уровень приложений
- 6. Уровень представления данных
- 5. Сеансовый уровень
- 4. Транспортный уровень
- 3. Сетевой уровень
- 2. Канальный уровень
- 1. Физический уровень

Физический уровень Physical level

Задача уровня:

Передача отдельных битов между непосредственно соединенными сетевыми устройствами

Описывает физические аспекты передачи информации:

- Природа передающей среды
- Полоса пропускания
- Напряжение
- Крутизна фронтов
- Используемые частоты
- Размер и форма разъемов
- ..

Реализуется аппаратными методами в сетевом адаптере

Канальный уровень Data link level

Задача уровня:

 Передача данных, организованных в кадры (frame) без искажений между узлами сети, связанными одной средой передачи данных.

На этом уровне:

- Осуществляется проверка возможности доступа к разделяемой среде
- Выделение кадров из потока данных, поступающих по сети, формирование кадров при отправке
- Вычисляются и проверяются контрольные суммы для проверки правильности передачи

Канальный уровень Data link level

7 6 1 3 1

Подуровни:

- Верхний: Logical Link Control (LLC)
 - Установка виртуального канала связи
 - Взаимодействие с сетевым уровнем Реализуется сетевым адаптером и драйверами
- Нижний: Media Access Control (MAC)
 - Контроль состояния сети
 - Доступ к разделяемой среде
 - Приём и передача кадров
 - Проверка правильности кадров
 - Повторная передача

Реализуется сетевым адаптером

Канальный уровень Data link level

7 6 1 3 1

МАС / физические / канальные адреса

- Необходимы для адресации устройств в рамках разделяемой среды
- Формат зависит от стандарта сети
- Как правило используется плоское адресное пространство
- Должна быть обеспечена уникальность адресов в рамках сетевого стандарта:
 - Блоки адресов распределяются между производителями оборудования
 - Каждое устройство получает уникальный адрес из выделенного производителю блока

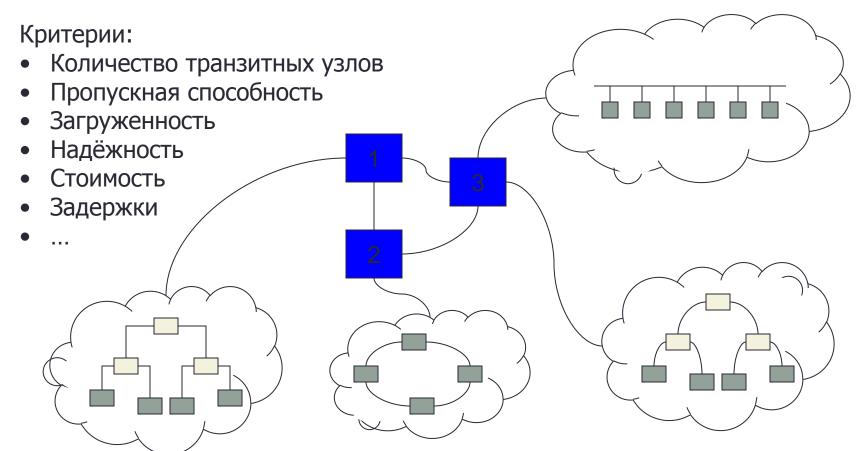
Канальный уровень Data link level

Возможности:

 Достаточен для организации взаимодействия сетевых устройств в рамках одной разделяемой среды

Недостатки:

- Фиксированная топология сети, как правило не допускающая резервных каналов
- Адреса имеют смысл в рамках одной технологии
- Плоское адресное пространство и произвольное распределение адресов затрудняют поиск маршрутов
- Широковещательные пакеты распространяются по всей сети
- Число подключаемых устройств и размер сети могут быть ограничены используемой технологией


Задача уровня:

 Доставка пакетов (packet) данных от отправителя к получателю в рамках составной сети произвольной топологии

На этом уровне:

- Сопрягаются сети, использующие различные технологии канального уровня
- Решается задача адресации в составной сети
- Осуществляется поиск маршрутов для передачи данных в условиях произвольной топологии сети

Маршрутизация: выбор маршрута доставки пакета от отправителя получателю.

Сетевые / логические / виртуальные адреса:

- Идентифицируют сетевые устройства в рамках глобальной сети
- Могут иметь иерархическую структуру
- Уникальны в пределах сети
 - Распределяются специализированными организациями

7 6 1 3 1

Типы протоколов:

- Маршрутизируемые протоколы реализуют продвижение пакетов через сеть
- Протоколы маршрутизации используются маршрутизаторами для сбора информации о топологии сети и построения маршрутов
- Протоколы разрешения адресов обеспечивают преобразование между сетевыми и МАС-адресами

Транспортный уровень Transport level

Задача уровня:

 Обеспечить высшим уровням доставку информации с требуемым уровнем надёжности и качеством услуг

Обеспечение качества связи:

• Срочность

- Надёжность
 - Исправление искажений
 - Повторная передача потерянных пакетов
 - Корректировка порядка доставки/дублирования
 - Организация виртуальных каналов связи

Транспортный уровень Transport level

Функции:

- Разбивка сообщений сеансового уровня на пакеты (датаграммы / datagram)
- Буферизация принимаемых пакетов
- Упорядочивание прибывающих пакетов
- Адресация прикладных процессов
- Управление потоком

Требуемое качество выбирается клиентом

Ceaнсовый уровень Session level

Задача уровня:

- Обеспечение управления диалогом:
 - Установление способа обмена сообщениями (дуплексный, полудуплексный)
 - Синхронизация обмена сообщениями
 - Организация контрольных точек и обеспечение откатов

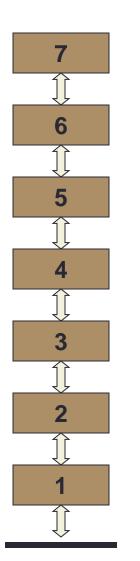
Уровень представления данных Presentation level

7 6 1 3 1

Задача уровня:

• Модифицировать форму представления данных для передачи по сети, не меняя содержания

Возможные функции:


- Шифрование
- Изменение кодировок
- Преобразование форматов

Прикладной уровень Application level

Прикладной уровень составляет набор сетевых сервисов, предоставляемых системой конечному пользователю.

Единица обмена данными на этом уровне – **сообщение** (**message**).

Эталонная модель взаимодействия открытых систем ISO (OSI ISO)

- 7. Уровень приложений
- 6. Уровень представления данных
- 5. Сеансовый уровень
- 4. Транспортный уровень
- 3. Сетевой уровень
- 2. Канальный уровень
- 1. Физический уровень

УСТРОЙСТВА ПЕРЕДАЧИ ДАННЫХ

Устройства передачи данных Физический уровень

- Ретранслятор / Репитер / Repeater
- Концентратор / Хаб / Hub

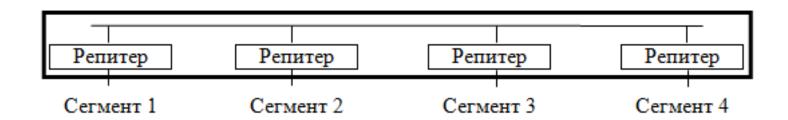
Система 1		Система 2
Уровень 7		Уровень 7
Уровень 6		Уровень 6
Уровень 5		Уровень 5
Уровень 4		Уровень 4
Уровень 3		Уровень 3
Уровень 2	Репитер, хаб	Уровень 2
Уровень 1	Уровень 1	Уровень 1

Устройства передачи данных Физический уровень

Транслируют поступившую на один порт информацию на все остальные порты.

Ретранслятор / Репитер / Repeater

Обеспечивает восстановление качества сигнала, может использоваться для соединения разных сред передачи (в рамках одной технологии).

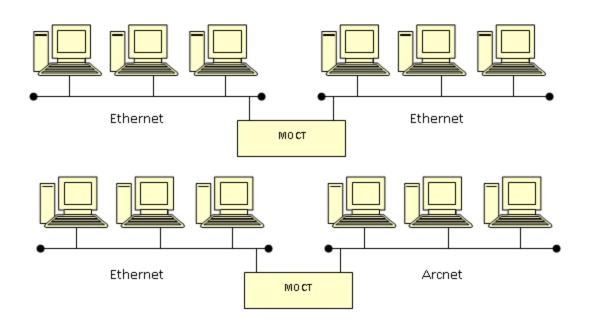


Устройства передачи данных Физический уровень

Транслируют поступившую на один порт информацию на все остальные порты.

Концентратор / Хаб / Hub

Несколько репитеров в одном корпусе. Служит для объединения нескольких сегментов в одну сеть.


Устройства передачи данных Канальный уровень

- Moct / Bridge
- Коммутатор / Switch

Система 1		Система 2
Уровень 7		Уровень 7
Уровень 6		Уровень 6
Уровень 5		Уровень 5
Уровень 4	Коммутатор,	Уровень 4
Уровень 3	МОСТ	Уровень 3
Уровень 2	Уровень 2	Уровень 2
Уровень 1	Уровень 1	Уровень 1

Устройства передачи данных Канальный уровень

- Mocт / Bridge
 - Используется для соединения разнородных сетей
 - Может захватывать подуровень LLC

Устройства передачи данных Канальный уровень

- Kоммутатор / Switch
 - Анализируют кадры канальном уровне (МАС)
 - Используются для разделения сети на несколько сегментов.
 - Передают информацию только в тот сегмент, где находится получатель (по МАС-адресу).
 - Снижается нагрузка на сеть
 - Повышается безопасность
 - Как правило, анализ сети ведётся автоматически.
 - Могут выявлять ошибки, реже производить фильтрацию, ...

Устройства передачи данных Сетевой уровень

• Маршрутизатор / Router

Система 1		Система 2
Уровень 7		Уровень 7
Уровень 6		Уровень 6
Уровень 5		Уровень 5
Уровень 4	Маршрутизатор	Уровень 4
Уровень 3	Уровень 3	Уровень 3
Уровень 2	Уровень 2	Уровень 2
Уровень 1	Уровень 1	Уровень 1

Устройства передачи данных Сетевой уровень

- Маршрутизатор / Router
 - Анализируют пакеты и адреса сетевого уровня
 - Используются для объединения разнородных сетей
 - Обеспечивают маршрутизацию в сетях произвольной топологии
 - Ручная настройка
 - Автоматическая, с применением специальных протоколов
 - Не пропускают широковещательные пакеты
 - Осуществляют фильтрацию трафика, распределение между альтернативными каналами...

Устройства передачи данных Верхние уровни модели OSI

• Шлюз – используется для передачи данных между сетями, имеющими существенно различающиеся архитектуры.

Могут работать на самых верхних, вплоть до 7 уровня модели OSI.

Как правило, реализуются программно.

Решают такие задачи как:

- передача электронной почты между сетями
- передача файлов

• ...